Super-resolution imaging by metamaterial-based compressive spatial-to-spectral transformation.
نویسندگان
چکیده
We present a new far-field super-resolution imaging approach called compressive spatial to spectral transformation microscopy (CSSTM). The transformation encodes the high-resolution spatial information to a spectrum through illuminating sub-diffraction-limited and wavelength-dependent patterns onto an object. The object is reconstructed from scattering spectrum measurements in the far field. The resolution of the CSSTM is mainly determined by the materials used to perform the spatial to spectral transformation. As an example, we numerically demonstrate sub-15 nm resolution by using a practically achievable Ag/SiO2 multilayer hyperbolic metamaterial.
منابع مشابه
Super-resolution of Hyperspectral Images Using Compressive Sensing Based Approach
Over the past decade hyper spectral (HS) image analysis has turned into one of the most powerful and growing technologies in the field of remote sensing. While HS images cover large area at fine spectral resolution, their spatial resolutions are often too coarse for the use in various applications. Hence improving their resolution has a high payoff. This paper presents a novel approach for supe...
متن کاملHyperspectral Imagery Super-Resolution by Compressive Sensing Inspired Dictionary Learning and Spatial-Spectral Regularization
Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR) method via dictionary learning and spatial-spectral regula...
متن کاملMultispectral Compressive Imaging Strategies using Fabry-Pérot Filtered Sensors
This paper introduces two acquisition device architectures for multispectral compressive imaging. Unlike most existing methods, the proposed computational imaging techniques do not include any dispersive element, as they use a dedicated sensor which integrates narrowband Fabry-Pérot spectral filters at the pixel level. The first scheme leverages joint inpainting and super-resolution to fill in ...
متن کاملTransformation optics and metamaterials
We review recent progress in developing a new class of specially designed optical metamaterial spaces with functionalities that cannot be obtained with conventional optics or natural materials. These optical metamaterial spaces could enable innovative paradigms of transformation optics pertinent to optical cloaking, sub-wavelength sensing, super-resolution imaging, magnifying hyperlenses, and l...
متن کاملSuper-resolution imaging using a three-dimensional metamaterials nanolens
Super-resolution imaging beyond Abbe’s diffraction limit can be achieved by utilizing an optical medium or “metamaterial” that can either amplify or transport the decaying near-field evanescent waves that carry subwavelength features of objects. Earlier approaches at optical frequencies mostly utilized the amplification of evanescent waves in thin metallic films or metal-dielectric multilayers,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 9 46 شماره
صفحات -
تاریخ انتشار 2017